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A long way in 80 years

b |e L.de Broglie —

S RN e E. Schrodinger — 1925, ....
Pauli exclusion Principle - 1925
Fermi statistics - 1926
Thomas-Fermi approximation — 1927

First density functional — Dirac — 1928

Dirac equation — relativistic quantum mechanics - 1928
| | | | | | | | | | | |
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Quantum Mechanics === Technology
Greatest Revolution of the 20" Century

* Bloch theorem — 1928
* Wilson - Implications of band theory - Insulators/metals —1931

* Wigner- Seitz — Quantitative calculation for Na - 1935
e Slater - Bands of Na - 1934 (proposal of APW in 1937)

 Bardeen - Fermi surface of a metal - 1935
 First understanding of semiconductors — 1930’s

* Invention of the Transistor — 1940’s
— Bardeen — student of Wigner
— Shockley — student of Slater




Quantum Mechanics === Technology
Challenges for the 215 Century

« Famous challenges for science

Create new materials and systems by design

Build upon discoveries of new materials — Fullerenes, nanotubes, . . .
Single layer 2-d crystals made by scraping crystals!

Build upon discoveries of self-assembled systems

Make progress in understanding biological systems starting from the
fundamental equations of quantum mechanics

* Qutstanding issues for computation
— Bridging the time and length scales

— Length — from atoms to nano to macroscopic size

— Time — picoseconds to milliseconds
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The Basic Methods of Electronic Structure

Hylleras — Numerically exact solution for H, — 1929
— Numerical methods used today in modern efficient methods

Slater — Augmented Plane Waves (APW) - 1937

— Not used in practice until 1950’s, 1960’s — electronic computers

Herring — Orthogonalized Plane Waves (OPW) — 1940

— First realistic bands of a semiconductor — Ge — Herrman, Callaway (1953)

Koringa, Kohn, Rostocker — Multiple Scattering (KKR) — 1950’s
— The “most elegant” method - Ziman

Boys — Gaussian basis functions — 1950°s
— Widely used, especially in chemistry

Phillips, Kleinman, Antoncik,— Pseudopotentials — 1950’s
— Hellman, Fermi (1930’s) — Hamann, Vanderbilt, ... — 1980’s

Andersen — Linearized Muffin Tin Orbitals (LMTO) — 1975
— The full potential “L” methods — LAPW, ....
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Basis of Most Modern Calculations
Density Functional Theory

« Hohenberg-Kohn; Kohn-Sham - 1965
» (Car-Parrinello Method — 1985

e Improved approximations for the density functionals
— Generalized Gradient Approximations, . . .

* Evolution of computer power

e Nobel Prize for Chemistry, 1998, Walter Kohn

* Widely-used codes —

— ABINIT, VASP, CASTEP, ESPRESSO, CPMD, FHI98md,
SIESTA, CRYSTAL, FPLO, WEINZ2K, . . .
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Most Cited Papers in APS Journals

11 papers published in APS journals since 1893 with > 1000 citations
(citations in APS journals, ~5 times as many references in all science journals)

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003

Publication
PR 140, A1133 (1965)
PR 136, B864 (1964)

PRB 23, 5048 (1981)

PRL 45, 566 (1980)

PR 108, 1175 (1957)
PRL 19, 1264 (1967)
PRB 12, 3060 (1975)
PR 124, 1866 (1961)
RMP 57, 287 (1985)
RMP 54, 437 (1982)
PRB 13, 5188 (1976)

PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.

# cites Av. age Title

3227

2460
2079
1781
1364
1306
1259
1178
1055
1045
1023

26.7
28.7
14.4

15.4
20.2
15.5
18.4
28.0

9.2
10.8
20.8

Self-Consistent Equations Including Exchange and Correlation Effects
Inhomogeneous Electron Gas

Self-Interaction Correction to Density-Functional Approximations for
Many-Electron Systems

Ground State of the Electron Gas by a Stochastic Method

Author(s)
W. Kohn, L. J. Sham
P. Hohenberg, W. Kohn

J. P. Perdew, A. Zunger

D. M. Ceperley, B. ). Alder

Theory of Superconductivity
A Model of Leptons

J. Bardeen, L. N. Cooper, . R. Schrieffer
S. Weinberg

Linear Methods in Band Theory

0. K. Anderson

Effects of Configuration Interaction of Intensities and Phase Shifts
Disordered Electronic Systems

Electronic Properties of Two-Dimensional Systems

U. Fano
P. A. Lee, T. V. Ramakrishnan
T. Ando, A. B. Fowler, F. Stern

Special Points for Brillouin-Zone Integrations

H. ). Monkhorst, ). D. Pack

From Physics Today, June, 2005



Density Functional Theory
The Basis of Most Modern Calculations

Hohenberg-Kohn; Kohn-Sham — 1965

Defined a new approach to the

many-body interacting electron problem
 Partl

— Brief statement of the Hohenberg-Kohn theorems and
the Kohn-sham Ansatz

— Overview of the solution of the Kohn-Sham equations and the
importance of pseudopotentials in modern methods

e Partll

— Deeper insights into the Hohenberg-Kohn theorems and
the Kohn-sham Ansatz

— The nature of the exchange-correlation functional

— Understanding the limits of present functionals and
the challenges for the future



( The Fundamental Hamiltonian )

Interacting electrons in an external potential
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e Only one small term: The kinetic energy of the nuclei

e If we omit this term, the nuclei are a fixed external
potential acting on the electrons

e The final term is essential for charge neutrality — but
1s a classical term that is added to the electronic part



The basis of most modern calculations
Density Functional Theory (DFT)

Hohenberg-Kohn (1964)

Vewt(r) @ no(r)
(i

U
V.({r}) = WYo({r})

All properties of the many-body system are determined by
the ground state density ny(r)

Each property is a functional of the ground state density n,
(r) which 1s written as { [n]

A functional f [n,] maps a function to a result: n,(r) — f
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The Kohn-Sham Ansatz

* Kohn-Sham (1965) — Replace original many-body problem
with an independent electron problem — that can be solved!

* The ground state density is required to be the same as the

exact density
no(r) =Y, > 97 (0)[%,

o =1

Veer(r) 2E no(r) no(r) =0 Vieg(r)
I 0 1 I

vi({r}) = Wo({r}) Yi=1,N(r) = Pi(r)

* Only the ground state density and energy are required to be the
same as in the original many-body system

11



The Kohn-Sham Ansatz 11

* From Hohenberg-Kohn the ground state energy 1s a
functional of the density E [n], minimum at n =n,

e From Kohn-Sham
no(r) =3 3 |97 (r)|?,
o =1

1
Bics = 53 X [V9{ P+ [ deVeai(0)n()+ Bitarsree 1+ By 1+ Exclrnl

Equations for independent
articles - soluble

Exchange-Correlation
Functional — Exact theory
but unknown functiona

 The new paradigm — find useful, approximate functionals
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The Kohn-Sham Equations

* Assuming a form for E__[n]

* Minimizing energy (with constraints) — Kohn-Sham Eqgs.
no(r) =3 3 [ (1)l

o =1

1
Exgs = EZ Z |V¢'LU|2+/ drVezt(r)n(r)+Exgrtree[n]+Err+ Exc[n].

o =1

SEks Eigenvalues are
. ) = 0, (1) . .
Constraint — require op7*(r) approximation
Exclusion principle for o to the energies to
independent particle (Wrl¥y ) = 030,01 (2) " add or subtract
1_, . N electrons
(_§v + VKS(r)7 —&; )¢z (I‘) =0 (3) _electron bands
More later

VO' — V ariree
KS(r) ext(r) + sn(r, o) + sn(r, o)

Vet (t) + VHartree(r) + Vacac(r)(‘]')
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Solving Kohn-Sham
Equations

e Structure, types of atoms

* Guess for input

e Solve KS Egs.

 New Density and Potential

« Self-consistent?

e Qutput:
— Total energy, force, stress, ...
— Eigenvalues

Self-Consistent Kohn-Sham Equations

Initial Guess

nT(r), nJ'(r)

>

Calculate Effective Potential

Vec;‘f(r) = Veat(r) + Vaare[n] + V[T, nt]

Solve KS Equation

(-39 475, )70 = vz

Calculate Electron Density

|2

n?(r) =), S |¥7(r)

Self-consistent?

Output Quantities

Energy, Forces, Stresses, Eigenvalues, ...
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Solving Kohn-Sham
Equations

* What is the computational cost?

e (Can the KS approach be applied
to large complex systems?

e Limiting factor —
Solving the KS Eqgs.

« Solution by diagonalization
scales as (N,;..on)’

e Improved methods ~N?

e Order-N — “Linear Scaling”
Allows calcs. for large systems
— Integration with classical
methods for multiscale analysis
— More later

Self-Consistent Kohn-Sham Equations

Initial Guess

nT(r), 'n,J'(r)

>

Calculate Effective Potential

Vec;‘f(r) = Veat(r) + Vaare[n] + V[T, nt]

Solve KS Equation

(-39 475,00 o7 = vt

Calculate Electron Density

|2

n?(r) =3, £7|ve(r)

Self-consistent?

Output Quantities

Energy, Forces, Stresses, Eigenvalues, ...
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Calculations on Materials
Molecules, Clusters, Solids, ....

* Basic problem - many electrons in the presence of
the nuclel

* Core states — strongly bound to nucle1 — atomic-like

* Valence states — change in the material — determine
the bonding, electronic and optical properties,
magnetism, .....

16



The Three Basic Methods for
Modern Electronic Structure Calculations
 Plane waves

— The simplicity of Fourier Expansions

— The speed of Fast Fourier Transforms

— Requires smooth pseudopotentials

* Localized orbitals
— The intuitive appeal of atomic-like states

— Simplest interpretation in tight-binding form

— QGaussian basis widely used in chemistry Key Point -
— Numerical orbitals used in SIESTA All methods agree
e Augmented methods when done carefully!

— “Best of both worlds” — also most demanding
— Requires matching inside and outside functions
— Most general form — (L)APW

17



Plane Waves

 The most genera

;

TR0

e Kohn-Sham
Equations
in a crystal

TN

0

i k(1) o< ) cim(k) x exp(i(k + Gm) -1) (1)

I approach

i

=

ZHm,m’(k)Ci,m’(k) — ei(k)ci,m(k) (2)

Hp, (k)

ﬁQ

me

k+Gm|?0, Ve s £ (Gr—Gpr).
(3)

* The problem 1s the atoms! High Fourier components!
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Plane Waves

e (L)APW method

* Augmentation: represent the wave function inside
each sphere in spherical harmonics
— “Best of both worlds”
— But requires matching inside and outside functions

— Most general form — can approach arbitrarily precision

19



Plane Waves

1

QOE
@@@@@@
©OOE

Pseudopotential @

Generate Pseudopotential in atom (spherical) —

* Pseudopotential can be constructed to be weak

— Can be chosen to be smooth

* Pseudopotential Method — replace each potential

solid 2

atom 1

use 1n solid

— Solve Kohn-Sham equations in solid directly in Fourier space

20



Plane Waves

APW

Match all-electron wave function
at sphere boundary

 PAW

Smooth function plus added
function only inside sphere

/

Pseudopotential
Cast theory in terms of only the
smooth functions that are solutions
of pseudopotential equations

/’
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r(a.u.)

21



Examples of Modern Calculations

* Properties of crystals — many calculations are now “routine”

— Definitive tests of the theory — comparisons with experiments

« (alculations for complex systems

— Theory provides key role along with experiments

— Understanding

— Predictions

— Direct simulation of atomic scale quantum phenomena
« Examples

— Surfaces, interfaces, defects, ....

— Thermodynamic phase transitions, Liquids, Melting, ...

— Nanostructures — in real environments, ...

— Large complex molecules — in solution, ....

D
| | | | | | | | e |
B

1900 1920 1940 1960 1980 2000 2020
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Examples of Modern Calculations

Electron density in silicon

"Electronic Structure: Basic Theory and Practical Methods*, R. M. Martin,
Cambridge University Press, 2004 — Calculated using ABINIT

In Si the black and grey
atoms are identical

23



Charge Density of Si — Experiment
- LAPW calculations with LDA, GGA

EXp LDA GGA

« Electron density difference from sum of atoms

— Experimental density from electron scattering

— (Calculations with two different functionals
* J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997).

— Very similar results with pseudopotentials
* O. H. Nielsen and R. M. Martin (1995)

24



Comparisons — LAPW — PAW -
- Pseudopotentials (VASP code)

Method Si CaF»o bcc Fe
a B a B |a B a B m

NCPP® [ 3.54 460 (|5.39 98[5.21 90 2.75¢ 226°¢
PAW? | 3.54 460 |5.38 98|5.34 100

PAW? | 3.54 460 |5.40 95|5.34 101 |2.75 247 2.00
USPP® | 354 461 |5.40 95|5.34 101 |[2.72 237 2.08
LAPW® | 3.54 470 |5.41 98|5.33 110 |2.72¢ 2454 2 044
EXP® |3.56 443 |5.43 99|5.45 85-90|2.87¢ 17249 2.12d

e a— lattice constant; B — bulk modulus; m — magnetization

« aHolzwarth, ef al.; P’Kresse & Joubert; °Cho & Scheffler; dStizrude, et al.
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Phase Transitions under Pressure

Silicon is a Metal for P > 110 GPa

—7.84 T ’107.1 ‘l | ] I ‘
: SILICON
Si
~107.2|-
—_ -107.3
E T
& e
> 3
@ = _107.4f
S— G »
:
g Z
w
w -107.5
-790 |- ' S\ HEXAGONAL
DIAMOND |
-107.6
_ DIAMOND
-7.92 : | L | 1 | 1 } 1 -107.7 | | { | | |
06 07 08 09 10 11 06 07 08 09 10 1.1
~ Volume VOLUME V/V,

* Demonstration that pseudopotentials are an accurate
“ab 1ni1tio” method for calculations of materials

» Results are close to experiment!

— M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).

— R. Biswas, R. M. Martin, R. J. Needs and O. H. Nielsen, Phys. Rev. B 30, 3210 (1982).
26



Examples of Modern Calculations

-4 Aluminum | :
= 300} 97(0,0,9) = 9=(9,9,0) | 9=(9,9.9)
Phonons 3
Comparison of theory 720 P
g | §° :
and experiment S 100l
H

(=}

Calculated from the

response function — 3
“Density functional z
perturbation theory” &
Now a widely-used P
tool in ABINIT, 5
ESPRESSO, . .. 3

De Gironcoli, et al.
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Examples of Modern Calculations

* Instability and predicted ferroelectric displacement in
BaTiO; - calculated with the SIESTA and LAPW codes
— Provided by R. Weht and J. Junquera

@(/\

e

Te S

Perovskite structure

Energy (meV)

10

-10 -

20 -

-30 -

40 -

Unstable cubic structure

|

|

Stable

distortion

-0.05
Ti displacement relative to Ba (Ang)

0.00

0.05

<€

>
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The Car-Parrinello Advance

e (ar-Parrinello Method — 1985

— Simultaneous solution of Kohn-Sham equations for electrons
and Newton’s equations for nuclei

— Iterative update of wavefunctions - instead of diagonalization
— FFTs instead of matrix operations — N InN instead of N? or N3

— Trace over occupied subspace to get total quantities (energy,
forces, density, ...) instead of eigenfunction calculations

— Feasible due to simplicity of the plane wave pseudopotential
method
* A revolution in the power of the methods

— Relaxation of positions of nuclei to find structures
— Simulations of solids and liquids with nuclei moving thermally

— Reactions, . ..
« Stimulated further developments - VASP, ABINIT, SIESTA, . ..

29



Simulation of Liquid Carbon

e Solid Line: Car-Parrinello plane wave pseudopotential
method (Galli, et al, 1989-90)

e Dashed Line: Tight-Binding form of Xu, et al (1992)
| | | —Qtwofold

= ¥ threefold
- \% fourfold

N
W
|

D
S
I

[E—
-
I

Radial density distribution g(r)
& -
I I

S
o

“snapshot of liquid”
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Example of Thermal Simulation

Pressure (bar)

* Phase diagram of carbon

* Full Density Functional “Car-Parrinello” simulation
e G. Galli, et al (1989); M. Grumbach, et al. (1994)

1e408 g

le+0O7 -

F e DAC limit F

! sical /1 IQUID(N=3-5
”p‘g/m/ /L1oumai-3-5

let+06 [

100000

10000

SIMPLE CUBICI_,,-—/"'

—————— — LIQUID(N=6-7)

f,f“"’fﬂ"—f
_—Jupiter ;

" adiabat -

LIQUID(N=2-3)

| 1

2000 4000 6000 8000 10000 12000
Temperature (Kelvin)
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Examples of Modern Calculations

 Unraveling the steps in the Ziegler-Nata reaction

— Industrial process for production of polyethylene

— Simulations with Car-Parrinello MD — plane wave pseudopotentials —
M. Boero, et al.

Transition — insetion
Adds one ethelyne unit to polymer

32



Examples of Modern Calculations

Atomic scale Au wires on Si (557) surface

- »
*on
e

STM 1mage of self-assembled atomic “wires” on a Si surface
Crain, et al, Phys Rev B 69, 125401 (2004)

e

i
i
4

...

il

Theoretical prediction — using SIESTA code - of structure in

very good agreement with experiment— done later!
Sanchez-Portal and R. M. Martin, Surf. Sci. 532, 655 (2003)

E
!
4
|

Explains one-dimensional metallic bands observed by photoemission




Linear Scaling ‘Order-N’ Methods
for Simulations of Large Systems

* Fundamental Issues of locality in quantum
mechanics

» Paradigm for view of electronic properties
* Practical Algorithms
e Results

34



Locality in Quantum Mechanics

« V. Heine (Sol. St. Phys. Vol. 35, 1980)
“Throwing out k-space™
Based on 1deas of Friedel (1954), . ..

* Many properties of electrons in one region are
independent of
distant regions

 Walter Kohn
“Nearsightness”™

35



General 1dea used to create Order-N methods

e Divide System into (Overlapping) Spatial Regions.
Solve each region in terms only of 1ts neighbors.
(Terminate regions suitably) "

a
i
‘d S \a S

AT
L U\ N

o Use standard methods
for each region

e Sum charge densities
to get total density,
Coulomb terms

Divide and Conquer Method
W. Yang, 1991

Related approaches in other methods
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Deposition of C,q Buckyballs on Diamond

* Simulations with ~ 5000 atoms, Approximate tight-binding
Hamiltonian (Xu, et al.) demonstrates feasibility
( A. Canning. G.~Galli and J .Kim, Phys.Rev.Lett. 78, 4442 (1997).
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Simulations of DNA with the SIESTA code

Machado, Ordejon, Artacho, Sanchez-Portal, Soler (preprint)
Self-Consistent Local Orbital O(N) Code
Relaxation - ~15-60 min/step (~ 1 day with diagonalization)

Iso-density surfaces

38



HOMO and LUMO in DNA (SIESTA code)

- Eigenstates found by |
N3 method after

relaxation

 Could be O(N)
for each state

FI¢. 1. HOMO bands in symmetric and wagged DNA (5x107! ¢/a.u.®)



Examples of oriented pigment molecules that today are being
simulated by empirical potentials

Theoretical Biophysics Group
Beckman Institute
sity of Dlinois at Urbana-Champaign
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How to go beyond empirical potentials?

Solve the entire system quantum mechanically
— not feasible and not accurate enough now
—need empirical adjustments for sensitive processes

Solve electronic problem only in critical regions (e.g. catalytic sites)
— probably still with some adjustments
— couple to empirical methods for large scale features

Multiscale!
Space
Time
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Conclusions Part 1

A long way in 80 years!
Electronic Structure 1s the quintessential many-body
problem of quantum mechanics

— Interacting electrons — real materials and phenomena

Density functional theory 1s by far the most widely
applied “ab initio” method used for “real materials™

in physics, chemistry, materials science

— Approximate forms have proved to be very successful
— BUT there are shortcomings and failures!
Momentous time for theory

— New opportunities and challenges for the future

— Bridging the length and time scales is critical issue

— Requires care and understanding of limitations -



