Density Functional theory Introduction

Based upon

Cambridge University Press, 2004

ElectronicStructure.org

Resources for Electronic Structure

- <u>Research Groups</u>
- <u>Research Centers</u>
- Software
- <u>Book Website</u>
- Figures & images

MCC

- <u>Schools</u>
- <u>Events calendar</u>
- <u>Career</u>
- <u>Opportunities</u>
- <u>Software</u>

A long way in 80 years

L. de Broglie – Nature 112, 540 (1923).

- E. Schrodinger 1925,
- Pauli exclusion Principle 1925
- Fermi statistics 1926
- Thomas-Fermi approximation 1927
- First density functional Dirac 1928
- Dirac equation relativistic quantum mechanics 1928

1900	1920	1940	1960	1980	2000	2020

Quantum Mechanics — Technology Greatest Revolution of the 20th Century

- Bloch theorem 1928
- Wilson Implications of band theory Insulators/metals –1931
- Wigner- Seitz Quantitative calculation for Na 1935
- Slater Bands of Na 1934 (proposal of APW in 1937)
- Bardeen Fermi surface of a metal 1935
- First understanding of semiconductors 1930's
- Invention of the Transistor 1940's
 - Bardeen student of Wigner
 - Shockley student of Slater

Quantum Mechanics ---- Technology Challenges for the 21st Century

- Famous challenges for science
 - Create new materials and systems by design
 - Build upon discoveries of new materials Fullerenes, nanotubes, ...
 Single layer 2-d crystals made by scraping crystals!
 - Build upon discoveries of self-assembled systems
 - Make progress in understanding biological systems starting from the fundamental equations of quantum mechanics
- Outstanding issues for computation
 - **Bridging** the time and length scales
 - Length from atoms to nano to macroscopic size
 - **Time** picoseconds to milliseconds

The Basic Methods of Electronic Structure

- Hylleras Numerically exact solution for $H_2 1929$
 - Numerical methods used today in modern efficient methods
- Slater Augmented Plane Waves (APW) 1937
 - Not used in practice until 1950's, 1960's electronic computers
- Herring Orthogonalized Plane Waves (OPW) 1940
 - First realistic bands of a semiconductor Ge Herrman, Callaway (1953)
- Koringa, Kohn, Rostocker Multiple Scattering (KKR) 1950's
 - The "most elegant" method Ziman
- Boys Gaussian basis functions 1950's
 - Widely used, especially in chemistry
- Phillips, Kleinman, Antoncik, Pseudopotentials 1950's
 - Hellman, Fermi (1930's) Hamann, Vanderbilt, ... 1980's
- Andersen Linearized Muffin Tin Orbitals (LMTO) 1975
 - The full potential "L" methods LAPW,

				//////////////////////////////////////		
1900	1920	1940	1960	1980	2000	2020

Basis of Most Modern Calculations Density Functional Theory

- Hohenberg-Kohn; Kohn-Sham 1965
- Car-Parrinello Method 1985
- Improved approximations for the density functionals

 Generalized Gradient Approximations, . . .
- Evolution of computer power
- Nobel Prize for Chemistry, 1998, Walter Kohn
- Widely-used codes
 - ABINIT, VASP, CASTEP, ESPRESSO, CPMD, FHI98md, SIESTA, CRYSTAL, FPLO, WEIN2k, . . .

Most Cited Papers in APS Journals

 11 papers published in APS journals since 1893 with > 1000 citations (citations in APS journals, ~5 times as many references in all science journals)

Table 1. Physical Review Articles with more than 1000 Citations Through June 2 <u>003</u>									
Publication	# cites	Av. age	Title	Author(s)					
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham					
PR 136, B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn					
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems	J. P. Perdew, A. Zunger					
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder					
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer					
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg					
PRB 12, 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Anderson					
PR 124, 1866 (1961)	1178	28.0	Effects of Configuration Interaction of Intensities and Phase Shifts	U. Fano					
RMP 57, 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan					
RMP 54, 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern					
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack					
PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.									

From Physics Today, June, 2005

Density Functional Theory The Basis of Most Modern Calculations

Hohenberg-Kohn; Kohn-Sham – 1965 Defined a new approach to the many-body interacting electron problem

- Part I
 - Brief statement of the Hohenberg-Kohn theorems and the Kohn-sham Ansatz
 - Overview of the solution of the Kohn-Sham equations and the importance of pseudopotentials in modern methods
- Part II
 - Deeper insights into the Hohenberg-Kohn theorems and the Kohn-sham Ansatz
 - The nature of the exchange-correlation functional
 - Understanding the limits of present functionals and the challenges for the future

The Fundamental Hamiltonian

Interacting electrons in an external potential

$$\hat{H} = -\sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{i,I} \frac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$
$$-\sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|}$$

- Only one small term: The kinetic energy of the nuclei
- If we omit this term, the nuclei are a fixed external potential acting on the electrons
- The final term is essential for charge neutrality but is a classical term that is added to the electronic part

The basis of most modern calculations Density Functional Theory (DFT)

• Hohenberg-Kohn (1964)

$$V_{ext}(\mathbf{r}) \bigoplus_{\substack{\Downarrow \\ \Downarrow \\ \Psi_i(\{\mathbf{r}\}) \\ \Rightarrow \\ \Psi_0(\{\mathbf{r}\})}} n_0(\mathbf{r})$$

- All properties of the many-body system are determined by the ground state density $n_0(r)$
- Each property is a functional of the ground state density n₀
 (r) which is written as f [n₀]
- A functional $f[n_0]$ maps a function to a result: $n_0(r) \rightarrow f$

The Kohn-Sham Ansatz

- Kohn-Sham (1965) Replace original many-body problem with an independent electron problem that can be solved!
- The ground state density is required to be the same as the exact density

$$n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_i^{\sigma}(\mathbf{r})|^2,$$

$$V_{ext}(\mathbf{r}) \stackrel{HK}{\leftarrow} n_0(\mathbf{r}) \stackrel{KS}{\leftrightarrow} n_0(\mathbf{r}) \stackrel{HK_0}{\Rightarrow} V_{KS}(\mathbf{r})$$

$$\psi_i(\{\mathbf{r}\}) \Rightarrow \Psi_0(\{\mathbf{r}\}) \stackrel{W}{\leftrightarrow} \psi_{i=1,N_e}(\mathbf{r}) \leftarrow \psi_i(\mathbf{r})$$

• Only the ground state density and energy are required to be the same as in the original many-body system

The Kohn-Sham Ansatz II

- From Hohenberg-Kohn the ground state energy is a functional of the density $E_0[n]$, minimum at $n = n_0$
- From Kohn-Sham

$$n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_i^{\sigma}(\mathbf{r})|^2,$$

• The new paradigm – find useful, approximate functionals

The Kohn-Sham Equations

- Assuming a form for $E_{xc}[n]$
- Minimizing energy (with constraints) \rightarrow Kohn-Sham Eqs. $n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1}^{\sigma} |\psi_i^{\sigma}(\mathbf{r})|^2$,

$$E_{KS} = \frac{1}{2} \sum_{\sigma} \sum_{i=1} |\nabla \psi_i^{\sigma}|^2 + \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{II} + E_{xc}[n].$$

Constraint – required Exclusion principle for independent particles $\langle \psi_i^{\sigma} | \psi_j^{\sigma'} \rangle = \delta_{i,j} \delta_{\sigma,\sigma'}.$

$$\left(-\frac{1}{2}\nabla^2 + V_{KS}^{\sigma}(\mathbf{r}), -\varepsilon_i^{\sigma}\right)\psi_i^{\sigma}(\mathbf{r}) = 0 \qquad (3)$$

Eigenvalues are approximation to the energies to add or subtract electrons –electron bands More later

(1)

(2)

$$V_{KS}^{\sigma}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \frac{\delta E_{Hartree}}{\delta n(\mathbf{r},\sigma)} + \frac{\delta E_{xc}}{\delta n(\mathbf{r},\sigma)}$$
$$= V_{ext}(\mathbf{r}) + V_{Hartree}(\mathbf{r}) + \frac{V_{xc}^{\sigma}(\mathbf{r})}{V_{xc}(\mathbf{r})}$$

13

Solving Kohn-Sham Equations

- Structure, types of atoms
- Guess for input
- Solve KS Eqs.
- New Density and Potential
- Self-consistent?
- Output:
 - Total energy, force, stress, ...
 - Eigenvalues

Solving Kohn-Sham Equations

- What is the computational cost?
- Can the KS approach be applied to large complex systems?
- Limiting factor Solving the KS Eqs.
- Solution by diagonalization scales as (N_{electron})³
- Improved methods $\sim N^2$
- Order-N "Linear Scaling" Allows calcs. for large systems – integration with classical methods for multiscale analysis – More later

Calculations on Materials Molecules, Clusters, Solids,

• Basic problem - many electrons in the presence of the nuclei

- Core states strongly bound to nuclei atomic-like
- Valence states change in the material determine the bonding, electronic and optical properties, magnetism,

The Three Basic Methods for Modern Electronic Structure Calculations

• Plane waves

- The simplicity of Fourier Expansions
- The speed of Fast Fourier Transforms
- Requires smooth pseudopotentials

Localized orbitals

- The intuitive appeal of atomic-like states
- Simplest interpretation in tight-binding form
- Gaussian basis widely used in chemistry
- Numerical orbitals used in SIESTA

Augmented methods

- "Best of both worlds" also most demanding
- Requires matching inside and outside functions
- Most general form (L)APW

Key Point -All methods agree when done carefully!

Plane Waves

• The most general approach

• Kohn-Sham Equations in a crystal

$$\sum_{m'} H_{m,m'}(\mathbf{k}) c_{i,m'}(\mathbf{k}) = \varepsilon_i(\mathbf{k}) c_{i,m}(\mathbf{k})$$
(2)

$$H_{m,m'}(\mathbf{k}) = \frac{\hbar^2}{2m_e} |\mathbf{k} + \mathbf{G}_m|^2 \delta_{m,m'} + V_{eff}(\mathbf{G}_m - \mathbf{G}_{m'}).$$
(3)

• The problem is the atoms! High Fourier components!

Plane Waves

• (L)APW method

- Augmentation: represent the wave function inside each sphere in spherical harmonics
 - "Best of both worlds"
 - But requires matching inside and outside functions
 - Most general form can approach arbitrarily precision

Plane Waves

• Pseudopotential Method – replace each potential

- 1 Generate Pseudopotential in atom (spherical) 2 use in solid
- Pseudopotential can be constructed to be weak
 - Can be chosen to be smooth
 - Solve Kohn-Sham equations in solid directly in Fourier space

Examples of Modern Calculations

- Properties of crystals many calculations are now "routine"
 - Definitive tests of the theory comparisons with experiments
- Calculations for complex systems
 - Theory provides key role along with experiments
 - Understanding
 - Predictions
 - Direct simulation of atomic scale quantum phenomena
- Examples
 - Surfaces, interfaces, defects,
 - Thermodynamic phase transitions, Liquids, Melting, ...
 - Nanostructures in real environments, ...
 - Large complex molecules in solution,

Examples of Modern Calculations

Electron density in silicon

"Electronic Structure: Basic Theory and Practical Methods", R. M. Martin, Cambridge University Press, 2004 – Calculated using ABINIT

In Si the black and grey atoms are identical

Charge Density of Si – Experiment - LAPW calculations with LDA, GGA

- Electron density **<u>difference</u>** from sum of atoms
 - Experimental density from electron scattering
 - Calculations with two different functionals
 - J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997).
 - Very similar results with pseudopotentials
 - O. H. Nielsen and R. M. Martin (1995)

Comparisons – LAPW – PAW – - Pseudopotentials (VASP code)

Method	C		Si		CaF ₂		bcc Fe		
	a	B	a	B	a	B	a	B	m
$NCPP^a$	3.54	460	5.39	98	5.21	90	2.75 ^c	226 ^{<i>c</i>}	
PAW^a	3.54	460	5.38	98	5.34	100			
PAW^b	3.54	460	5.40	95	5.34	101	2.75	247	2.00
$USPP^b$	3.54	461	5.40	95	5.34	101	2.72	237	2.08
$LAPW^a$	3.54	470	5.41	98	5.33	110	2.72^{d}	245^d	2.04^d
EXP^a	3.56	443	5.43	99	5.45	85-90	2.87^{d}	172^d	2.12^{d}

- a lattice constant; B bulk modulus; m magnetization
- ^aHolzwarth, *et al.*; ^bKresse & Joubert; ^cCho & Scheffler; ^dStizrude, *et al.*

Phase Transitions under Pressure Silicon is a Metal for P > 110 GPa

- Demonstration that pseudopotentials are an accurate "ab initio" method for calculations of materials
- Results are close to experiment!
 - M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
 - R. Biswas, R. M. Martin, R. J. Needs and O. H. Nielsen, Phys. Rev. B 30, 3210 (1982).

Examples of Modern Calculations

Phonons Comparison of theory and experiment

- Calculated from the response function – "Density functional perturbation theory"
- Now a widely-used tool in ABINIT, ESPRESSO, . . . De Gironcoli, et al.

Examples of Modern Calculations

 Instability and predicted ferroelectric displacement in BaTiO₃ - calculated with the SIESTA and LAPW codes

The Car-Parrinello Advance

- Car-Parrinello Method 1985
 - Simultaneous solution of Kohn-Sham equations for electrons and Newton's equations for nuclei
 - Iterative update of wavefunctions instead of diagonalization
 - FFTs instead of matrix operations N lnN instead of N^2 or N^3
 - Trace over occupied subspace to get total quantities (energy, forces, density, ...) instead of eigenfunction calculations
 - Feasible due to simplicity of the plane wave pseudopotential method
- A revolution in the power of the methods
 - Relaxation of positions of nuclei to find structures
 - Simulations of solids and liquids with nuclei moving thermally
 - Reactions, . . .
- Stimulated further developments VASP, ABINIT, SIESTA, ...

Simulation of Liquid Carbon

- Solid Line: Car-Parrinello plane wave pseudopotential method (Galli, et al, 1989-90)
- Dashed Line: Tight-Binding form of Xu, et al (1992)

Example of Thermal Simulation

- Phase diagram of carbon
- Full Density Functional "Car-Parrinello" simulation
- G. Galli, et al (1989); M. Grumbach, et al. (1994)

Examples of Modern Calculations

- Unraveling the steps in the Ziegler-Nata reaction
 - Industrial process for production of polyethylene
 - Simulations with Car-Parrinello MD plane wave pseudopotentials M. Boero, et al.

Examples of Modern Calculations

Atomic scale Au wires on Si (557) surface

STM image of self-assembled atomic "wires" on a Si surface Crain, et al, Phys Rev B 69, 125401 (2004)

Theoretical prediction – using SIESTA code - of structure in very good agreement with experiment– done later! Sanchez-Portal and R. M. Martin, Surf. Sci. 532, 655 (2003)

Explains one-dimensional metallic bands observed by photoemission

Linear Scaling 'Order-N' Methods for Simulations of Large Systems

- Fundamental Issues of locality in quantum mechanics
- Paradigm for view of electronic properties
- Practical Algorithms
- Results

Locality in Quantum Mechanics

- V. Heine (Sol. St. Phys. Vol. 35, 1980) "Throwing out k-space" Based on ideas of Friedel (1954), ...
- Many properties of electrons in one region are independent of distant regions
- Walter Kohn "Nearsightness"

General idea used to create Order-N methods

- Divide System into (Overlapping) Spatial Regions.
 Solve each region in terms only of its neighbors.
 (Terminate regions suitably)
- Use standard methods for each region
- Sum charge densities to get total density, Coulomb terms

Divide and Conquer Method W. Yang, 1991 Related approaches in other methods

Deposition of C₂₈ Buckyballs on Diamond

 Simulations with ~ 5000 atoms, Approximate tight-binding Hamiltonian (Xu, et al.) demonstrates feasibility (A. Canning. G.~Galli and J.Kim, Phys.Rev.Lett. 78, 4442 (1997).

Simulations of DNA with the SIESTA code

- Machado, Ordejon, Artacho, Sanchez-Portal, Soler (preprint)
- Self-Consistent Local Orbital O(N) Code
- Relaxation ~15-60 min/step (~ 1 day with diagonalization)

Iso-density surfaces

HOMO and LUMO in DNA (SIESTA code)

- Eigenstates found by N³ method after relaxation
- Could be O(N) for each state

FIG. 1. HOMO bands in symmetric and wagged DNA $(5 \mathrm{x} 10^{-4}~e/\mathrm{a.u.^3})$

FUTURE! ---- Biological Systems, . . .

• Examples of oriented pigment molecules that today are being simulated by empirical potentials

FUTURE! ---- Biological Systems, . . .

- How to go beyond empirical potentials?
- Solve the entire system quantum mechanically
 - not feasible and not accurate enough now
 - need empirical adjustments for sensitive processes
- Solve electronic problem only in critical regions (e.g. catalytic sites)
 - probably still with some adjustments
 - couple to empirical methods for large scale features

Multiscale! Space Time

Conclusions Part I

- A long way in 80 years!
- Electronic Structure is the quintessential many-body problem of quantum mechanics
 - Interacting electrons \rightarrow real materials and phenomena
- **Density functional theory** is by far the most widely applied "*ab initio*" method used for "real materials" in physics, chemistry, materials science
 - Approximate forms have proved to be very successful
 - BUT there are shortcomings and failures!
- Momentous time for theory
 - New opportunities and challenges for the future
 - Bridging the length and time scales is critical issue
 - Requires care and understanding of limitations