
Quantum ESPRESSO

Notes on parallel computing



Parallel programming paradigms

Most modern electronic-structure code use one of the following approaches, or a
combination of them:

• MPI (Message Passing Interface) parallelization
Many processes are executed in parallel, one per processor, accessing their own
set of variables. Access to variables on another processor is achieved via explicit
calls to MPI libraries.

• OpenMP parallelization
A single process spawns sub-processes (or “threads”) on other processors that
can access and process the variables of the code. Achieved with compiler
directives and/or via call to “multi-threading” libraries like Intel MKL or IBM
ESSL.

Quantum ESPRESSO exploits both MPI and OpenMP parallelization; the former
is well-established, the latter is quickly stabilizing.



Comparison of parallel programming paradigms

MPI parallelization:

+ Portable to all architectures (as long as MPI libraries exist)

+ Can be very efficient (as long as MPI libraries are)

+ Can scale up to a large number of processors

– Requires significant code reorganization and rewriting

OpenMP parallelization:

+ Relatively easy to implement: requires modest code reorganization and rewriting

– Not very efficient: doesn’t scale on more than a few processors. Interesting for
multi-core CPU’s or, in combination with MPI, for large parallel machines based
on multi-core CPU’s (e.g.: IBM BlueGene).



Relevant variables in PW-PP electronic-structure codes

Nw: number of plane waves (used in wavefunction expansion)
Ng: number of G-vectors (used in potential/charge density expansion)
N1, N2, N3: dimensions of the FFT grid1

Na: number of atoms in the unit cell or supercell
Ne: number of electron (Kohn-Sham) states (bands) used in the calculation
Np: number of projectors in non-local pseudopotentials (summed over the cell)
Nk: number of k-points in the irreducible Brillouin Zone

Note that

Nw ∝ V (size of the unit cell), Nw ∝ E3/2
c (kinetic energy cutoff)

and
Ng ∼ N1 ×N2 ×N3, Ng ∼ αNw

with α = 8 for norm-conserving, α ∼ 20 for ultrasoft;

Np ∼ βNa, Ne ∼ γNa (β, γ ∼ 10), Na << Nw.
1Note that there can be two distinct FFT grids with US PP



Time-consuming steps in PW-PP electronic-structure codes

• Calculation of density, n(r) =
∑
|ψ(r)|2:

FFT + linear algebra (matrix-matrix multiplication)

• Calculation of potential, V (r) = Vxc[n(r)] + VH[n(r)]:
FFT + operations on real-space grid

• Iterative diagonalization (SCF) / electronic force (CP) calculation, Hψ products:
FFT + linear algebra (matrix-matrix multiplication)

• Subspace diagonalization (SCF) / Iterative orthonormalization of Kohn-Sham
states (CP): diagonalization of Ne×Ne matrices + matrix-matrix multiplication

Basically: most CPU time spent in linear-algebra operations, implemented in BLAS
and LAPACK libraries, and in FFT



Memory-consuming arrays in PW-PP electronic-structure
codes

• Wavefunctions (Kohn-Sham orbitals):
at least nk arrays (at least 2 for CP) of size Nw ×Ne, plus a few more copies
used as work space. If nk > 1, arrays can be stored to disk and used one at the
time, thus reducing memory usage, at the price of increased disk I/O

• Charge density and potential:
several vectors with dimension Ng (in G-space) or Nr = N1 × N2 × N3 (in
R-space) each

• Pseudopotential projectors:
a Nw ×Np array containing βi(G)

• Miscellaneous Matrices:
Ne×Ne arrays containing 〈ψi|ψj〉 products used in subspace diagonalization or
iterative orthonormalization; Ne ×Np arrays containing 〈ψi|βj〉 products



Required actions for effective parallelization of PW-PP
electronic-structure codes

• Balance load:
all processors should have the same load as much as possible

• Reduce communications to the strict minimum:
communication is typically slower or much slower than computation!

• Distribute all memory that grows with the size of the cell:
if you don’t, you will run out of memory for large cells

• Distribute all computation that grows with the size of the cell:
if you don’t, sooner or later non-parallelized calculations will take most of the
time (a practical demonstration of Amdhal’s law)

The solution currently implemented in Quantum ESPRESSO introduces several
levels of parallelization.



Parallelization level 1

• Image parallelization:
Currently implemented only for NEB, but there are other cases where it could
be useful. Images, i.e. points in the coordinate space, are distributed across
nimage groups of CPUs. Example for 64 processors divided into nimage = 4
groups of 16 processors each:

mpirun -np 64 pw.x -nimage 4 -inp input file

+ potentially linear CPU scalability, limited by number of images:
nimage must be a divisor of the number of NEB images

+ very modest communication requirements

o load balancing fair to good: unlikely that all images take the same CPU

– memory usage does not scale at all!

Good when usable, especially if the communication hardware is not so fast



Parallelization level 2

• k-point parallelization:
k-points are distributed (if more than one) among npool pools of CPUs. Example
for 16 processors divided into nimage = 4 image groups of npool = 4 pools of 4
processors each:

mpirun -np 64 pw.x -nimage 4 -npool 4 -inp input file

+ potentially linear scalability, limited by number of k-points:
npool must be a divisor of Nk

+ modest communication requirements

o load balancing fair to good

– memory usage does not scale in practice

Good if one has k-points, especially if the communication hardware is not so fast



Parallelization level 3

• Plane-wave parallelization:
wave-function coefficients are distributed among nPW CPUs so that each CPU
works on a subset of plane waves. The same is done on real-space grid points.
This is the default parallelization scheme if other parallelization levels are not
specified. In the example above:

mpirun -np 64 pw.x -nimage 4 -npool 4 -inp input file

plane-wave parallelization is performed on groups of 4 processors.

+ high scalability of memory usage: the largest arrays are all distributed
+ good load balancing among different CPUs if nPW is a divisor of N3

+ excellent scalability, limited by the real-space 3D grid to nPW ≤ N3

– heavy and frequent intra-CPU communications, mainly in the 3D FFT

Best choice overall, if one has sufficiently fast communication hardware



Parallelization level 4

• linear-algebra parallelization:
distribute and parallelize matrix diagonalization and matrix-matrix
multiplications needed in iterative diagonalization (PWscf) or orthonormalization
(CP). Introduces a linear-algebra group of ndiag processors as a subset of the
plane-wave group. ndiag = m2, where m is an integer such that m2 ≤ nPW .
Not used by default (changed in new version). Should be set using the -ndiag
or -northo command line option, e.g.:

mpirun -np 64 pw.x -ndiag 25 -inp input file

+ RAM is efficiently distributed: removes a major bottleneck in large systems
+ Increases speedup in large systems
o Scaling tends to saturate: testing required to choose optimal value of ndiag

Home-made parallel algorithms are supplied, but ScaLAPACK works much better for
serious calculations. Useful in large systems, when the RAM and CPU requirements
of linear-algebra operations become a sizable share of the total.



Parallelization level 5

• task group parallelization:
each plane-wave group of processors is split into ntask task groups of nFFT

processors, with ntask × nFFT = nPW ; each task group takes care of the FFT
over Ne/nt states. Used to extend scalability of FFT parallelization. Not set
by default. Example for 4096 processors divided into nimage = 8 images of
npool = 2 pools of nPW = 256 processors, divided into ntask = 8 tasks of
nFFT = 32 processors each; subspace diagonalization performed on a subgroup
of ndiag = 144 processors :

mpirun -np 4096 pw.x -nimage 8 -npool 2 -ntg 8 -ndiag 144 ...

Allows to extend scaling when the PW parallelization saturates: definitely needed
if you want to run on more than ∼ 100 processors.



Parallelization level 6

• OpenMP parallelization:

explicit (with directives) parallelization of FFT is activated at compile time
with preprocessing flag; currently implemented only for ESSL and FFTW.
Requires an OpenMP-aware compiler,
implicit (with libraries) parallelization with OpenMP-aware libraries: currently
only ESSL and MKL

+ Extends scaling

- Danger of MPI-OpenMP conflicts!

To be used on large multicore machines (e.g. IBM BlueGene), in which several
MPI instances running on the same node do not give very good performances.



Summary of parallelization levels in Quantum ESPRESSO

group distributed quantities communications performances

image NEB images very low linear CPU scaling,
fair to good load balancing;
does not distribute RAM

pool k-points low almost linear CPU scaling,
fair to good load balancing;
does not distribute RAM

plane- PW, G-vector coefficients, high good CPU scaling,
wave R-space FFT arrays good load balancing,

distributes most RAM

task FFT on electron states high improves load balancing
linear- subspace hamiltonians very high improves scaling,
algebra and constraints matrices distributes more RAM

OpenMP FFT, libraries intra-node extends scaling on
multicore machines



(Too) Frequently Asked Question
(that qualify you as a parallel newbie)

• How many processors can (or should) I use?
It depends!

• It depends upon what??

– Upon the kind of physical system you want to study: the larger the systems,
the larger the number of processors you can or should use

– Upon the factor driving you away from serial execution towards parallel
execution: not enough RAM, too much CPU time needed, or both? If RAM
is a problem, you need plane-wave parallelization

– Upon the kind of machine you have: plane-wave parallelization is ineffective
on more than 4÷8 processors connected with cheap communication hardware

• So what should I do???
You should benchmark your job with different numbers of processors, pools,
image, task, linear algebra groups, taking into account the content of previous
slides, until you find a satisfactory configuration for parallel execution.



Compiling and running in parallel

• Compilation: if you have a working parallel environment (compiler / libraries),
configure will detect it and will attempt a parallel compilation by default.
Beware serial-parallel compiler conflicts, signaled by lines like

WARNING: serial/parallel compiler mismatch detected

in the output of configure. Check for the following in make.sys:

DFLAGS= ...-D PARA -D MPI ...
MPIF90=mpif90 or any other parallel compiler

For MPI-OpenMP parallelization, use
./configure --enable-openmp
verify the presence of -D OPENMP in DFLAGS

If configure doesn’t detect a parallel machine as such, your parallel
environment is either disfunctional (nonexistent or incomplete or not working
properly) or exotic (in nonstandard locations or for strange machines) .



Compiling and running in parallel (2)

• Execution: beware the syntax! the total number of processor is sometimes
an option of mpirun / mpiexec / whatever applies, sometimes it is set by
the batch queueing system; -nimage, -npool, -ndiag, -ntg are options of
Quantum ESPRESSO executables and should follow them.

On some machines, you may need to supply input data using Quantum
ESPRESSO option -inp filename; you may also need to supply optional
arguments via “mpirun -args ’optional-arguments’”

Be careful not to make heavy I/O via NFS. Write to either a parallel file
system (found only on expensive machines) or to local disks. In the latter case,
check that all processors can access pseudo dir and outdir. PWscf: use
option wf collect to collect final data files in a single place; consider using
option disk io to reduce I/O to the strict minimum.

Mixed MPI-OpenMP parallelization should be used ONLY on machines (e.g.
BlueGene) that allow you to control how many MPI processes run on a given
node, and how many OpenMP threads.



Scalability for “small” systems

Typical speedup vs number of processors:

128 Water molecules (1024 electrons) in a
cubic box 13.35 A side, Γ point.
PWscf code on a SP6 machine, MPI only.
ntg=1 parallelization on plane waves only
ntg=4 also on electron states



Scalability for “medium-size” systems

PSIWAT: Thiol-covered gold surface
and water, 4 k−points, 10.59 ×
20.53× 32.66 A3 cell, 587 atoms, 2552
electrons. PWscf code on CRAY XT4,
parallelized on plane waves, electron
states, k−points. MPI only.

CNT(1): nanotube functionalized with
porphyrins, Γ point, 1532 atoms, 5232
electrons. PWscf code on CRAY XT4,
parallelized on plane waves and electron
states, MPI only.

CNT(2): same system as for CNT(1).
CP code on a Cray XT3, MPI only.

3D parallel distributed FFT is the main bottleneck. Additional parallelization levels
(on electron states, on k−points if available) allow to extend scalability.



Mixed MPI-OpenMP scalability

Fragment of an Aβ-peptide in water
containing 838 atoms and 2312
electrons in a 22.1×22.9×19.9 A3 cell,
Γ-point. CP code on BlueGene/P, 4
processes per computing node.

Two models of graphene on Ir surface
on a BlueGene/P using 4 processes per
computing node. Execution times in s,
initialization + 1 self-consistency step.

N cores T cpu (wall) T cpu (wall)
443 atoms 686 atoms

16384 740(772) 2861 (2915)
32768 441(515) 1962 (2014)
65536 327(483) 751 (1012)

(the large difference between CPU and
wall time is likely due to I/O)


