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The OpenFOAM® Extend Project

• Separate from Official OpenFOAM® project

• Supported by academics and community

• Recently published version named foam-extend-3.0 Jeju

• Further information can be found at http://www.extend-project.de
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Advanced Capabilities of the
Extend Project version 3.0 Jeju

• Dynamic mesh with topological 
changes

• Sliding interfaces, mesh layering, 
attach-detach boundaries etc.

• Full second-order FVM discretization 
support on moving meshes with 
topological changes

• Finite Element Method with support 
for polyhedral meshes

• In foam-extend-3.0 full parallel 
support for topological changes
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Dynamic Mesh

Prescribed Mesh Motion

Example: Prescribed Mesh Motion
• Domain shape is changing during the simulation in a prescribed manner
• Motion is known and independent of the solution
• . . . but it is usually only prescribed at boundaries
• Definition of moving mesh involves point position and mesh connectivity for every

point and cell for every time-step of the simulation. This is typically defined with
reference to a pre-processor or parametrically in terms of motion parameters
(crank angle, valve lift curve, etc.)

• Solution-dependent mesh changes are out of the question: eg. mesh refinement
• Can we simplify mesh generation for dynamic mesh cases?

Dynamic Mesh Handling in OpenFOAM – p. 4

Taken from page 4 of reference (1)



Advanced Capabilities of
Extend Project version 3.0 Jeju
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Refine Mesh

Initial Mesh view of “throttle” tutorial under tutorials/multiphase/cavitatingFoam/ras/throttle



Advanced Capabilities of
Extend Project version 3.0 Jeju
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Refine Mesh

Final Mesh view of “throttle” tutorial under tutorials/multiphase/cavitatingFoam/ras/throttle



Advanced Capabilities of
Extend Project version 3.0 Jeju

• Tetrahedral FEM mesh deformation

• Radial Basis Function (RBF) mesh 
deformation

• Tetrahedral re-meshing dynamic mesh 
support

• Solid body motion functions

• All technologies has parallelization 
support
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Advanced Mesh Deformation

circleCylinder3D tutorial in foam-extend-3.0



Advanced Capabilities of
Extend Project version 3.0 Jeju

• Linear and non-linear materials, contact, self-contact and friction, with updated 
Lagrangian or absolute Lagrangian formulation.

• Solution of damage models and crack propagation in complex materials via 
topological changes
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Solid Mechanics Modeling



Advanced Capabilities of
Extend Project version 3.0 Jeju

• Block-coupled matrix support, allowing fully implicit multi-equation solution of 
NxN equation sets, with full parallelization support. First release of a block-AMG 
linear equation solver

• Fully implicit conjugate-coupled solution framework, allowing implicit solution of 
multiple equations over multiple meshes, with parallelism

• Multi-solver solution framework, allowing multiple field models to be solved in a 
coupled manner

• Algebraic multi-grid solver framework

• CUDA® solver release, provided in full source
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Advanced Solver Technologies



Advanced Capabilities of
Extend Project version 3.0 Jeju

• Turbomachinery features

• Describes machines that transfer 
energy between a rotor and a fluid, 
including both turbines and 
compressors.

• Internal combustion engine-specific 
dynamic mesh classes

• Two-stroke engine, Various forms of 4-
stroke, Multi-valve dynamic mesh 
classes

• Fluid-Structure Interaction
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Mounting of a steam turbine produced by Siemens, Germany
Taken from Wikipedia

Applications
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Fluid-Structure Interaction
• Significant mutual dependence between subdomains

• FSI gives more realistic approximations than CFD

• Examples : Car Aerodynamics, Blood Flow, Aircraft wings

• Problem Formulation, Numerical Discretization, Coupling
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Why FSI?

• (Bazilevs, Hsu, Benson, Sankaran, 
& Marsden, 2009) showed almost 
50% overestimation of Wall-Shear 
Stress on the vessel walls

• Viscoeleastic nature of blood 
vessels

• Non-newtonian model for blood 
viscosity
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222 Computational Fluid–Structure Interaction: Methods and Applications

Figure 8.13 A bifurcating middle cerebral artery segment with aneurysm. WSS for the SCAFSI M1SC
computation when the volumetric flow rate is maximum (top) and when the outflow pressure is maxi-
mum (bottom)

8.8.3 WSS Calculations with Refined Meshes

The computations reported in Takizawa et al. (2010b) were based on the same artery model
as the one used in Tezduyar et al. (2010a), which we described in Section 8.8.2, and involved
basically three new features. The new features were a) carrying out higher-resolution FSI
computations with more refined fluid and structure meshes, b) calculating the WSS with a
new technique, as described in Section 8.1.3 (instead of using the spatial version of Equa-
tion (5.119) as done in the preceding papers), and c) reporting OSI values that were calculated
with a new technique, as described in Section 8.1.4. We describe the computations from Tak-
izawa et al. (2010b). The “fine” structure mesh consists of 30 732 nodes and 20 366 eight-node
hexahedral elements, with 10 244 nodes and 10 183 four-node quadrilateral elements on the
fluid–structure interface and two layers of elements across the arterial wall. It is shown in
Figure 8.17. The reason behind using a more refined fluid mechanics mesh in the higher-
resolution FSI computations reported in Takizawa et al. (2010b) was to increase the accuracy
of the WSS calculations by increasing the fluid mechanics mesh refinement also on the arte-
rial wall, not just in the normal direction near the arterial wall. As pointed out in Takizawa
et al. (2010b), this would normally make sense only if the structural mechanics mesh has



Fluid-Structure Interaction

• Material-centered - Lagrangian Framework

• Space-centered - Eulerian Framework
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Problem Formulation in Continuum Mechanics

2 Fundamentals of Continuum Mechanics

In this chapter we develop the fundamental equations in continuum mechanics.

2.1 Kinematics
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Figure 2.1: Deformation of a material particle x̂ in a material body V̂ .

Let V̂ be a material body in the reference configuration. Then, let x̂ œ V̂ be a material particle
in the material body V̂ . After some time t, the particle x̂ is moved to a new position x. By
û = x≠ x̂ we denote the deformation of the particle x̂. We assume, that the deformation is
a continuous (and perhaps di�erentiable) function defining the displacement of all particles
x̂ œ V̂ :

û = x≠ x̂ ∆ x = x(x̂, t) = x̂+ û(x̂, t). (2.1)

Regarding the displacement of all particles x̂ œ V̂ , the reference body V̂ is deformed to V (t),
see Figure 2.1. By x(x̂, t) œ V (t) for t Ø 0 we denote the trajectory of the particle x̂. Physical
evidence tells us that at time t, no two di�erent particles x̂ œ V̂ and x̂Õ œ V̂ will be at the
same position position x œ V , thus the relation (2.1) is invertible and we define on V (t)

u = x≠ x̂ ∆ x̂ = x̂(x, t) = x≠ u(x, t). (2.2)

By summing up (2.1) and (2.2) we get

û(x̂, t) = u(x, t).

If we follow the trajectory of a particle x(x̂, t) we can define its velocity v̂(x̂, t) by

v̂(x̂, t) = d
t

x(x̂, t) = ˆ
t

x̂ · Ò̂
x̂

û+ ˆ
t

û(x̂, t) = ˆ
t

û(x̂, t).

We distinguish two coordinate frameworks when observing moving bodies and particles. The
Lagrangian framework viewpoint is material-centered: the focus follows a specify particle x̂.
Deformation û(x̂, t) and velocity v̂(x̂, t) denote the deformation and velocity of the particle
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Fluid-Structure Interaction

• Accuracy, Stability, Robustness

• Discretization level is important for Coupling Interface

• Same level - easier and more robust

• Different level - need to be accurately implemented for traction and kinematics
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Numerical Discretization

Test Case Results

Ɣ Deformations computed using default values of test case
Ɣ Exercise:

– Change maximum flow speed (via inletVelocityRamp) from 0.1 to 
0.2 and re-compute response

Maximum Ux = 0.1 m/s

16

Taken from page 16 of reference (2)



Fluid-Structure Interaction

• Monolithic (Strongly-Coupled)

• Governing equations are cast in terms of primitive variables

• Same level of discretization or different mesh sizes

• Fluid, Structure and Mesh Motion are solved simultaneously in a given time-step

• Fully-coupled - very robust

• Block-iterative, quasi-direct and direct-coupling
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Fluid-Structure Coupling



Fluid-Structure Interaction
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Arbitrary Lagrangian-Eulerian2 Arbitrary Lagrangian–Eulerian Methods

t Lagrangian description

t Eulerian description

t ALE description

Material point

Node

Particle motion

Mesh motion

Figure 1. One-dimensional example of Lagrangian, Eulerian and
ALE mesh and particle motion.

Figure 1, be moved in some arbitrarily specified way to
give a continuous rezoning capability. Because of this free-
dom in moving the computational mesh offered by the ALE
description, greater distortions of the continuum can be han-
dled than would be allowed by a purely Lagrangian method,
with more resolution than that afforded by a purely Eulerian
approach. The simple example in Figure 2 illustrates the
ability of the ALE description to accommodate significant
distortions of the computational mesh, while preserving the
clear delineation of interfaces typical of a purely Lagrangian
approach. A coarse finite element mesh is used to model the
detonation of an explosive charge in an extremely strong
cylindrical vessel partially filled with water. A compari-
son is made of the mesh configurations at time t = 1.0 ms
obtained respectively, with the ALE description (with auto-
matic continuous rezoning) and with a purely Lagrangian
mesh description. As further evidenced by the details of
the charge–water interface, the Lagrangian approach suf-
fers from a severe degradation of the computational mesh,
in contrast with the ability of the ALE approach to main-
tain quite a regular mesh configuration of the charge–water
interface.

The aim of the present chapter is to provide an in-
depth survey of ALE methods, including both conceptual

(a) (b)

(d)(c)

Figure 2. Lagrangian versus ALE descriptions: (a) initial FE
mesh; (b) ALE mesh at t = 1 ms; (c) Lagrangian mesh at
t = 1 ms; (d) details of interface in Lagrangian description.

aspects and numerical implementation details in view of
the applications in large deformation material response,
fluid dynamics, nonlinear solid mechanics, and coupled
fluid–structure problems. The chapter is organized as fol-
lows. The next section introduces the ALE kinematical
description as a generalization of the classical Lagrangian
and Eulerian descriptions of motion. Such generalization
rests upon the introduction of a so-called referential domain
and on the mapping between the referential domain and
the classical, material, and spatial domains. Then, the fun-
damental ALE equation is introduced, which provides a
relationship between material time derivative and referen-
tial time derivative. On this basis, the ALE form of the basic
conservation equations for mass, momentum, and energy is
established. Computational aspects of the ALE algorithms
are then addressed. This includes mesh-update procedures
in finite element analysis, the combination of ALE and
mesh-refinement procedures, as well as the use of ALE
in connection with mesh-free methods. The chapter closes
with a discussion of problems commonly encountered in
the computer implementation of ALE algorithms in fluid
dynamics, solid mechanics, and coupled problems describ-
ing fluid–structure interaction.
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tial time derivative. On this basis, the ALE form of the basic
conservation equations for mass, momentum, and energy is
established. Computational aspects of the ALE algorithms
are then addressed. This includes mesh-update procedures
in finite element analysis, the combination of ALE and
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with a discussion of problems commonly encountered in
the computer implementation of ALE algorithms in fluid
dynamics, solid mechanics, and coupled problems describ-
ing fluid–structure interaction.

Taken from page 2 of reference (4)



Fluid-Structure Interaction

• More flexible than Monolithic approach

• Existent fluid and structure solvers can be used

• Fluid-Structure interface coupling must be designed carefully

• Loosely-coupled and Tightly-coupled
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Partitioned Coupling



Fluid-Structure Interaction
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Loose-Coupling

FSI Loose Coupling

Ɣ Loose coupling approach does 
not check for convergence at 
each time step:

ĺ This is the source of the 
artificial added mass (fluid 

Estimate Structure Displacement

START

Move Fluid Mesh artificial added mass (fluid 
forces computed based on 
predicted instead of actual 
displacements)

ĺ Decreasing time step size does 
not necessarily improve 
stability

ĺ Instabilities most common 
when fluid/solid density ratio 
large (� 1)

5

Solve Fluid

Solve Structure

t=t+δt

t>tend STOP
Yes

No
Move Fluid Mesh

up = u

fluid density

solid density
>= 1

up = u

fluid density

solid density
>= 1

?



Fluid-Structure Interaction
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Tight-Coupling

FSI Tight Coupling

Ɣ Subiterations each time step to ensure fluid and structure 
interaction is converged
– Fixed-point iteration shown here with under-relaxation

START

6

Solve Fluid

Solve Solid

t=t+δt

Move Fluid Mesh

t>tend STOP

Fixed-Point Iteration

No Yes

Yes

No

i++

• Aitken’s under-relaxation method



FSI in The OpenFOAM® Extend
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icoFsiFoam

• Designed as a partitioned transient FSI solver for incompressible flow interacting 

with a solid of linear elasticity, causing small deformations in the solid. The 

algorithm performs the partitioned solver–loop:

1. Pressure is set on the FSI boundary

2. Traction on the solid boundary is updated

3. Solid deformation is solved using stressedFoam algorithm

4. Dynamic mesh is updated accordingly

5. Fluid domain is solved with a SIMPLE loop using additional pressure correction 
loops



FSI in OpenFOAM Extend
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icoFsiFoam
• Loosely-Coupled

• The most important part of the solver is setting motionU which determines how to 
solve mesh motion at given time-step.

• Dynamic Mesh takes care of everything automatically.

flappingConsoleSmall tutorial



FSI in OpenFOAM Extend
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icoFsiFoam

flappingConsoleSmall tutorial



FSI in OpenFOAM Extend
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icoFsiFoam

flappingConsoleSmall tutorial



FSI in OpenFOAM Extend
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Mesh Motion Equation

• Dynamic Mesh technique implemented in OpenFOAM is capable of refining mesh 

and updating the meshes on subdomains automatically. Since the mesh motion 

cannot be known priori, a mesh motion equation must be defined in order to solve 

moving mesh during the given time-step of FSI solver. There are 4 simple mesh 

motion equation present in OpenFOAM :

1. Spring analogy: insufficiently robust

2. Linear + torsional spring analogy: complex, expensive and non-linear

3. Laplace equation with constant and variable diffusivity

4. Linear pseudo-solid equation for small deformations



FSI in OpenFOAM Extend
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icoFsiElasticNonLinULSolidFoam
• Tightly-Coupled

• Transient solver for fluid-solid interaction for an incompressible fluid and a large 
strain solid. Solid mesh is moved using U interpolated using least squares 
method.

• Aitken’s under-relaxation method is used.

HronTurekFsi tutorial



Q & A
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